Грунтовый теплообменник своими руками – изготовление

Недостатки

Если повредить поверхностный слой такого обменника, то это приведет к снижению его эффективности, а также к возможному насыщению влагой. Все это потребует проведения ремонтных работ. При обустройстве обменника своими руками именно такого типа нужно также знать то, что слой гравия является как теплообменным пунктом, так и препятствием для прохождения воздуха. Из-за этого в системе потребуется установить дополнительный источник нагнетания воздуха — вентилятор с достаточно мощностью (несколько сотен Ватт). Естественно, что это дополнительные затраты как на установку и покупку, так и на последующую оплату электроэнергии. Из-за этого приходится достаточно тщательно проводить расчеты системы. Тут можно добавить, что расчеты жидкостного грунтового теплообменника несколько проще, чем гравийного, хотя его обустройство и конструкция более сложные.

Делаем своими руками

Прежде, чем приступать к изготовлению теплообменника, необходимо определиться с тем какой принцип передачи тепла будет реализован в таком устройстве.

Изготовление пластинчатого теплообменника

Для изготовления такого устройства необходимо приготовить следующие материалы и инструменты:

  • сварочный аппарат;
  • болгарка;
  • 2 листа нержавеющей рифлёной стали толщиной 4 мм;
  • плоский лист нержавеющей стали толщиной 4 мм;
  • электроды;

Процесс сборки:

  1. Из нержавеющей, рифлёной стали нарезаются квадраты со стороной 300 мм, в количестве 31 шт.
  2. Затем, из плоской нержавейки нарезается лента шириной 10 мм и общей длиной 18 метров. Данная лента разрезается на отрезки длиной 300 мм.
  3. Рифлёные квадраты свариваются друг с другом, полосой 10 мм с двух противоположных сторон, таким образом, чтобы каждая следующая секция была перпендикулярна предыдущей.
  4. В итоге, получается 15 секций, обращённых в одну сторону, и 15 в другую в одном корпусе кубической формы. Рифлёная поверхность таких секции позволяет эффективно передавать теплоту от одного теплоносителя другому, при этом, не происходит взаимное перемещение различных или однородных сред.
  5. В том случае, когда используется для передачи тепла не воздушная масса, а жидкость, к тем секциям, в которых будет циркулировать вода, приваривается коллектор из нержавеющей стали. Коллектор изготавливается из плоской нержавейки. Для этой цели болгаркой вырезаются прямоугольники: 300 *300 мм – 2 шт; 300 *30 мм – 8 шт. Таким образом, получится комплект, из которого сваривается 2 коллектора, которые напоминают по своей форме квадратную крышку от коробки.
  6. В каждом из коллекторовделается отверстие, к которому приваривается патрубок для последующего соединения с трубами отопительной системы или обеспечения горячим водоснабжением.
  7. Отверстия на коллекторах делаются у одного из углов а, а при установке их на теплообменник входной патрубок должен быть расположен в нижней части такой конструкции, а выходной – в верхней.

Рассмотренный выше теплообменник устанавливается открытой стороной в систему циркуляции горячих газов.

Таким образом, раскалённый газообразный теплоноситель будет передавать теплоту рифлённым стенкам нержавеющих пластин, которые, в свою очередь, будут нагревать жидкость.

Теплообменник такой конструкции можно использовать для передачи тепла от одной жидкости, к другой. Для этого на открытые части пластин приваривается с 2 сторон стальная рубашка с патрубком вышеописанной конструкции.

Чертеж:

Изготовление водяного теплообменника для печи

Обычная дровяная печь может не только отапливать помещение традиционным способом, но и использоваться для нагрева воды для отопления комнат, в которых данный обогревательный прибор не установлен.

Для изготовления такого устройства понадобятся следующие материалы и инструменты:

  • труба стальная диаметром 325 мм, длиной 1 метр;
  • труба стальная диаметром 57 мм, длиной 6 метров;
  • стальной лист толщиной 4 мм;
  • сварочный аппарат;
  • электроды;
  • газовый резак;
  • белый маркер;

Процесс изготовления:

  1. Цилиндр из трубы диаметром 325 мм устанавливается вертикально на стальной лист и обводится маркером или мелом.
  2. Обведённая окружность вырезается газовым резаком. Затем по получившемуся металлическому блину изготавливается ещё одна окружность такого же диаметра.
  3. В каждом из таких блинов вырезается 5 отверстий диаметром 57 мм. Такие отверстия должны быть равноудалены друг от друга, а также от середины блина и его края. Блины привариваются к цилиндру таким образом, чтобы их отверстия располагались напротив друг друга.
  4. Труба 57 мм нарезается болгаркой на отрезки длиной 101 см. Необходимо подготовить 5 таких отрезков.
  5. Каждый отрезок трубы устанавливается в отверстия таким образом, чтобы края этой трубы на 1 мм выходили из отверстий верхних и нижних “блинов”. Электросваркой отрезки труб свариваются. В результате, получается металлический цилиндр, внутри которого находятся трубы меньшего диаметра. По этим трубам будет проходить горячий воздух и дымовые газы, в результате чего, труба будет нагреваться и через свои стенки передавать тепло жидкости, которая будет находиться внутри цилиндра.
  6. Для осуществления циркуляции жидкости внутри металлического цилиндра, в нижней и верхней его части привариваются патрубки. Снизу такой конструкции будет подаваться холодная вода, в верхней – осуществляться забор нагретой таким образом жидкости.

Пошаговое руководство

Изготовление бесканального теплообменника

  1. Подготовьте емкость, лучше металлическую, пластиковая будет дольше нагреваться.
  2. Установите бак к началу системы отопления.
  3. Проделайте в емкости 2 отверстия для выходов. Одно – вверху, через которое горячая вода будет выводиться. Второе – внизу, холодная жидкость будет поступать из труб системы.
  4. Разместите выходы правильно, от этого будет зависеть скорость отдачи тепла.
  5. Запаяйте герметично отверстия, чтобы температура воздуха не тратилась на батарею, а помещение равномерно прогревалось.
  6. Для трубки используйте медь, она должна хорошо гнуться и отдавать максимально тепло в помещение.
  7. Согните трубку в форме спирали, получился змеевик.
  8. Поместите спираль в бак, концы трубки нужно вывести наружу, хорошо закрепить их.
  9. Подсоедините к концам деталей фитинг с резьбой.
  10. Подсоедините к трубе регулятор мощности, его можно купить в магазине, стоит недорого, поэтому на самостоятельном изготовлении не стоит зацикливаться.
  11. Система вполне будет работать исправно и без регулятора, но он нужен для регулирования мощности, экономии электроэнергии. Мощность можно выставить по своему усмотрению.
  12. Подсоедините к термостату клеммы, после чего – провода питания.
  13. Чтобы бак не изнашивался от перепадов температуры, установите анод.
  14. Закройте герметично все элементы.
  15. Наполните бак водой, теплообменник готов.

Типы грунтовых теплообменников

На сегодняшний день применяются два типа грунтовых теплообменников:

  • канальный (трубный), воздух в нем пропускается сквозь закопанный под землей канал (трубу);
  • бесканальный — здесь воздух проходит непосредственно через подготовленный подземный слой, с которым и происходит теплообмен.

В обоих случаях канал для подвода воздуха, прошедшего грунтовой теплообменник, присоединяется к каналу системы вентиляции, по которому снаружи подается свежий воздух (входное отверстие этого канала расположено, как правило, в стене дома).

При этом необходимо установить в вентиляционную систему механизм, с помощью которого можно выбрать источник свежего воздуха — грунтовой теплообменник или отверстие в стене.

Монтаж системы

Плиты необходимо смонтировать на «ножки», которые будут опираться на гравийный слой. Таким образом, получится, что воздух будет двигаться не сквозь слоя гравия, как при бесканальном типе, а между слоем плит и слоем гравия. Основное преимущество заключается в том, что использовать такой теплообменник можно достаточно длительный срок без регенерации гравийного слоя.

Обычный слой гравия может работать лишь 12 часов, после чего необходимо 12 часов «отдыха». Во время такого отдыха слой гравия будет забирать тепло у почвы, чтобы потом передать его в вентиляцию. При использовании плит эти рамки достаточно сильно упрощаются. Еще одно отличие безмембранного ГТО заключается в том, что будет отсутствовать сильное препятствие циркуляции воздуха. При бесканальном типе обменника гравий будет являться естественным препятствием воздушному потоку, из-за чего приходится оборудовать систему дополнительными вентиляторами чаще всего.

Основная проблема использования такого грунтового теплообменника для вентиляции своими руками заключается в том, что система не является сплошной, а потому применять ее полностью запрещается в тех регионах, где наблюдается повышенный уровень грунтовых вод или же имеется шанс того, что систему затопит атмосферными осадками.

Геотермальные тепловые насосы в нашем климате.

Температура грунта более стабильна, чем воздуха, поэтому грунтовой тепловой насос не должен работать в широком диапазоне температур испарителя и его компоненты могут быть благодаря этому дешевле, чем воздушного насоса, с хорошими параметрами. На некоторой глубине под поверхностью земли, называемой глубиной промерзания, температура всегда выше 0 градусов по Цельсию.

Глубина промерзания грунта в России нормируется СНиП 2.01.01-82, в котором эта глубина варьируется от 0,8 м до 2,4 м. Применяется также расчетный метод. На местном уровне, температура грунта может отличаться от этих значений (грунт может быть охлажден, например, от сильного ветра). Однако, на глубине большей, чем 1,5 м грунт всегда имеет плюсовую температуру. Чем глубже, тем температура грунта более стабильна – его не охлаждает холодный воздух, но он и меньше нагревается в результате воздействия солнечных лучей.

Бесканальный теплообменник

Такой теплообменник — это просто котлован глубиной 80 см и длиной 3-4 м, наполненный слоем гравия, изолированный сверху пенобетонными плитами. Благодаря такой конструкции температура внутри слоя гравия будет такой же, как и в почве на глубине 5 м (хотя слой гравия может находиться даже выше уровня участка). Из слоя гравия выводится патрубок для входа воздуха. Его входное отверстие устраивается так же, как и в случае с канальным теплообменником. С противоположной стороны котлована с гравием находится другое отверстие, из которого воздух засасывается в вентиляционную систему внутри дома.

Гравийный теплообменник дает возможность лучше увлажнять воздух

Это важное качество, поскольку в домах с приточно-вытяжной вентиляцией воздух, подогретый за счет рекуперации, как правило, слишком сухой. Для решения проблемы в гравийном теплообменнике устанавливаются трубки, подсоединенные к водопроводу, которые служат для периодического увлажнения слоя гравия (это позволяет отказаться от монтажа специальных электрических увлажнителей)

Воздух, проходя через слой гравия, увлажняется и одновременно фильтруется, в том числе и от биологического загрязнения.

Принцип работы

Давно известно, что почти на всей территории стран СНГ, температура в грунте на глубине 2 метров остается неизменной, а именно – около 10°C. Меняется она в зависимости от региона, но колебания обычно не превышают + — 2°C. Установка воздушных теплообменников подразумевает получение этой бесплатной энергии. За счет неизменной температуры конструкция прогревает помещения в холодное время года, а в жаркое – остужает. Грунтовая приточно-вытяжная вентиляция обеспечивает циркуляцию воздуха в помещении, также позволяет сохранить часть тепла, поступающего от обогревающего элемента. Обычно грунтовой теплообменникустанавливается вместе с рекуператором.

Рекуператор – это теплообменная система вентиляции. В ней холодный внешний воздух нагревается счет вытяжного теплого. В конструкции присутствует нагревающее устройство, вентиляторы, фильтры и трубопровод.

Эта схема позволяет получить уже подогретый свежий воздух из грунта, как результат – рекуператор затрачивает меньше энергии. Воздушная грунтовая система позволяет не только сохранить электроэнергию, но и сохранить конструкцию в рекуператоре в рабочем состоянии. В трубопроводе не будет замерзания конденсата, так как воздух подается всегда одной температуры. Подобная проблема обычно случается при использовании только рекуператора, когда в него идет морозный воздух.

Климат стран СНГ позволяет обеспечить теплообмен, величина охлаждения или подогрева в котором может колебаться от 5 до 20°C. Эффективность зависит от разницы между температурой грунта и внешним воздухом, чем она больше – тем сильнее теплообмен. Поэтому грунтовая система эффективна летом и зимой. В жару охлаждение осуществляется с 30°C до 20°C. В морозы подогрев происходит от -20°C до 0°C.

Весной и осенью температура воздуха в помещении чаще всего совпадает с температурой почвы. Поэтому теплообменник почти не влияет на микроклимат в доме. Но иногда грунтовая система может не только бездействовать, но и работать в отрицательном значении. К примеру, воздух в комнате имеет температуру около 12°C, а теплообменник охлаждает его до 8°C. В общем, использовать в межсезонье энергию грунта нет смысла. Изготавливая грунтовой теплообменник своими руками, нужно продумать способ отключения системы, чтобы свежий воздух шел с улицы, минуя теплообменник.

«Устойчивость» систем использования низкопотенциального тепла Земли

При эксплуатации грунтового теплообменника может возникнуть ситуация, когда за время отопительного сезона температура грунта вблизи теплообменника понижается, а в летний период грунт не успевает прогреться до начальной температуры – происходит понижение его температурного потенциала. Потребление энергии в течение следующего отопительного сезона вызывает еще большее понижение температуры грунта, и его температурный потенциал еще больше снижается. Это заставляет при проектировании систем использования низкопотенциального тепла Земли рассматривать проблему «устойчивости» таких систем. Часто энергетические ресурсы для снижения периода окупаемости оборудования эксплуатируются очень интенсивно, что может привести к их быстрому истощению. Поэтому необходимо поддерживать такой уровень производства энергии, который бы позволил эксплуатировать источник энергетических ресурсов длительное время. Эта способность систем поддерживать требуемый уровень производства тепловой энергии длительное время называется «устойчивостью». Для систем использования низкопотенциального тепла Земли дано следующее определение устойчивости: «Для каждой системы использования низкопотенциального тепла Земли и для каждого режима работы этой системы существует некоторый максимальный уровень производства энергии; производство энергии ниже этого уровня можно поддерживать длительное время (100–300 лет)».

Математическое моделирование показало, что значения ежегодного понижения температуры будут постепенно уменьшаться, а объем грунтового массива вокруг теплообменника, подверженного понижению температуры, с каждым годом будет увеличиваться. По окончании периода эксплуатации начинается процесс регенерации: температура грунта начинает повышаться. Характер протекания такого процесса подобен характеру процесса «отбора» тепла: в первые годы эксплуатации происходит резкий рост температуры грунта, а в последующие годы скорость ее повышения  уменьшается. Продолжительность периода «регенерации» зависит от длительности периода эксплуатации. Эти два периода примерно одинаковые.

Таким образом, системы тепло- и холодоснабжения зданий, использующие низкопотенциальную энергию тепла Земли, представляют собой надежный источник энергии, который может быть использован повсеместно. Этот источник может использоваться в течение достаточно длительного времени и может быть возобновлен по окончании периода эксплуатации.

Тепловые насосы нашли широкое применение для теплоснабжения жилых и административных зданий во многих странах мира со сходными с Россией климатическими условиями. Расширяется опыт применения тепловых насосов и в нашей стране.

Статья из журнала “Аква-Терм”, №2/ 2016. Рубрика “отопление и ГВС” Р. C. Ширяев

Пример расчета горизонтального теплообменника

Для примера рассчитаем площадь, занимаемую горизонтальным коллектором.  Допустим, что для дома необходим тепловой насос мощностью 10 кВт.

Снимаемая мощность контуров грунтового теплообменника теплового насоса вычисляется относительно мощности и СОР выбранного теплового насоса по формуле:

Ре = Pн * (1 – 1/СОР), кВт

Где Рн – номинальная мощность теплового насоса, СОР – коэффициент преобразования. Расчет применяют для одного из режимов согласно стандарту EN 14511 (обычно принимают точку В0/W35, где 0 °С – температура теплоносителя на входе в испаритель, 35 °С – температуры подачи в систему отопления). В качестве образца возьмем тепловой насос Nibe F1145-10 с параметрами при В0/W35: мощность – 9,95 кВт и СОР  — 5,03.

Ре = 9,95 * (1 -1/5,03) = 7,97 кВт;

Необходимая длинна горизонтального теплообменника теплового насоса, равна отношению необходимой мощности к снимаемой мощности одного метра трубы:

L = Pe/q, м

Где q  — принимаем 20 Вт/м (среднее значение для горизонтальных коллекторов).

L = 7,97/0,02 = 398,5 м

Для нашего теплового насоса будет оптимально 4 грунтовых контура по 100 м каждый. Что бы узнать какую площадь будет занимать такой коллектор необходимо это число умножить на величину шага укладки труб (принимаем шаг равный 0,7 м) S = 400 * 0,7  = 280 м². Это соответствует площадке размером примерно 12 х 24 м.

Эффективность

Использование грунтово-воздушных теплообменников как для частичного, так и для полного охлаждения и/или нагревания воздуха, вентилируемого в помещении, проходило с переменным успехом. К сожалению, литература переполнена чрезмерными обобщениями о «плюсах» и «минусах» применимости этих систем. Ключевым аспектом грунтово-воздушных теплообменников является пассивная природа работы и возможность применения в широком спектре природных условий.

Грунтово-воздушные теплообменники могут быть крайне рентабельными как в отношении предварительных, так и капитальных затрат, а также долговечными и дешевыми в обслуживании. Однако это сильно зависит от широты местности, высоты над уровнем моря, температуры окружающей среды, максимумов климатической температуры и относительной влажности, солнечной радиации, уровня воды, типа почвы (теплопроводности), содержания влажности в почве и внешнего проектирования системы или ее изоляции. В основном сухая почва с низкой плотностью, малым количеством или полностью отсутствующим слоем грунта может принести меньше всего выгод, хотя плотная влажная почва со значительным слоем грунта должно улучшить характеристики системы.

Система замедленного дренажа конденсата может улучшить тепловые характеристики. Влажная почва в контакте с охлаждающими трубами будет проводить тепло гораздо эффективнее, чем сухая почва.

Подземные охлаждающие трубы гораздо менее эффективны в жарком влажном климате (как во Флориде), где температура окружающей среды приближается к комфортной для людей температуре. Чем выше температура окружающей среды, тем менее эффективна система для охлаждения и осушения воздуха. Однако, почва может использоваться для частичного охлаждения и осушения заменяемого воздуха, поступающего в термическую буферную зону с пассивной солнечной подпиткой, например, в прачечной или террасе/теплице, особенно – в тех зонах, где есть купель, плавательная спа-зона или внутренний плавательный бассейн, где теплый влажный воздух извлекается летом, и требуется более холодный и сухой компенсационный воздух.

Не для всех регионов и мест пригодны грунтово-воздушные теплообменники. Среди условий, которые могут препятствовать правильному использованию систем – поверхностная скальная порода, высокий уровень воды и неподходящее пространство. В частности, в некоторых районах должна быть обеспечена тепловая перезарядка почвы. В бифункциональных системах (как нагревания, так и охлаждения) теплое время года обеспечивает тепловую перезарядку почвы для холодного сезона, а холодный сезон обеспечивает тепловую перезарядку почвы для теплого сезона, хотя даже для них стоит предусматривать вариант перегрузки теплового резервуара.

«Renata Limited» — выдающаяся фармацевтическая компания в Бангладеш проверила пилотный проект, пытающийся обнаружить, можно ли использовать туннельный грунтово-воздушный теплообменник в качестве дополнения к традиционной системе кондиционирования воздуха. Бетонные трубы с общей длиной в 60 футов (около 18,25 м), внутренним диаметром в 9 дюймов (около 23 см) и внешним диаметром в 11 дюймов (около 28 см) были закопаны на глубине в 9 футов (около 2,75 м) под землей, использовался вентилятор с расчетной мощностью 1,5 кВт.

Подземная температура на глубине оставалась на уровне в 28 C. Средняя скорость движения воздуха в туннеле составляла около 5 м/с. КПД подземного теплообменника, созданного таким образом, было малым и составляло от 1,5 до 3 ед. Результаты убедили власти, что в жарком и влажном климате неблагоразумно воплощать на практике концепт грунтово-воздушного теплообменника. Вторичный холодоноситель (сам грунт) изменяет температуру окружающей среды, что является главной причиной провала подобных принципов в жарких, влажных регионах (части Юго-Восточной Азии, американский штат Флорида и так далее).

Однако исследователи из Британии и Турции докладывали о чрезвычайно высоком КПД, превышающем 20 единиц. Температура под землей кажется самым важным показателем для проектирования грунтово-воздушного теплообменника.

Воздушный конвектор для отопления дома

Основное отличие конвектора от других обогрева­тельных приборов в том, что существует возможность подобрать конвектор для абсолютно любого помеще­ния, так как современные модели этих приборов обла­дают превосходным дизайном и способны украсить со­бой интерьер, придав ему элегантный внешний вид.

Говоря об отопительных приборах, специалисты от­мечают характерную особенность — развитие конвек­торов идет по пути уменьшения их массы и внутренне­го объема. Более тяжелый прибор дольше сохраняет тепло, то есть имеет большую тепловую инерцион­ность. Будучи нагрет, он не может быть быстро охлаж­ден с помощью терморегулятора и продолжает излу­чать накопленное тепло, делая температуру в помеще­нии излишне высокой.

Тепловые конвекторы — приборы, позволяющие распределять тепло по комнате более равномерно, чем радиаторы или другие отопительные системы. В результате предотвращается образование влаги и грибка. Кроме того, мы знаем, что основная теплоотдача радиатора происходит за счет излучения. Кон­вектор же более 90% тепла передает именно конвек­цией, что является неоспоримым преимуществом для создания эффективного, комфортного и здорового климата помещений. Регуляторы температуры позво­ляют быстро установить и поддерживать температуру с точностью от 0,4 до 1 оС.

Эффективность конвекторов в сочетании с автома­тической регулировкой температуры позволяет полу­чить ровно столько тепла, сколько необходимо. И сов­сем не случайно, конвекторы на территории Западной Европы эффективно и успешно используют уже в тече­ние 20 лет. Там уже давно подсчитано, что обогрев по­мещений конвектором на 30-40% экономичнее по сравнению с традиционными методами отопления. На российском рынке присутствуют различные модели конвекторов, которые отличаются друг от друга, как по нагревательному элементу, так и по дизайну. Но наи­больший успех у газовых конвекторов, выпуск которых освоили многие отечественные и зарубежные произво­дители, поставляющие на российский рынок отопи­тельные приборы.

Достоинства теплообменников для зимних палаток

Давайте посмотрим, чем хороши данные приборы:

  • Ускоренный прогрев внутреннего пространства палатки;
  • Отсутствие излишков влаги;
  • Более эффективное поглощение выделяемого горелкой тепла;
  • Совместимость с любыми типами газовых горелок;
  • Компактная конструкция;
  • Встроенные дымоходы для удаления продуктов сгорания.

Есть и недостатки:

  • Занимает свободное пространство;
  • Требует электропитания;
  • Требует хорошего дымохода и его вывода за пределы палаточного пространства.

Теплообменники идеальны для путешественников и любителей зимней рыбалки, имеющих возможность перемещать с собой большое количество вспомогательных устройств и аксессуаров – например, в автомобиле.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий