Гидравлический калькулятор – онлайн расчет участка напорного трубопровода

Гидравлический расчет в системах с принудительной циркуляцией

Гидравлический расчет в системах, где движение жидкости осуществляется принудительно, напрямую зависит от требуемой скорости движения, которая, в свою очередь, определяется параметрами напора, шероховатости внутренних поверхностей труб, а также материалами их изготовления.

Трубы из пластика имеют гораздо меньшую шероховатость, чем металлические. Однако при использовании полимеров значение диаметра должно оставаться таким же, каким он было бы при применении металла. Это требуется потому, что размеры толщины стенки пластиковых труб могут меняться в зависимости от рабочего и предельного значений напора. Диапазон изменения размеров всегда указывается производителями.

Линейное расширение

Смена геометрической формы изделий производится под силовым или температурным действием. Физические нагрузки, приводящие к линейному расширению или сжатию, негативно отражаются на эксплуатационных характеристиках. При невозможности компенсации расширения, трубы деформируются, что приводит к повреждению фланцевых уплотнителей и участков стыковки труб между собой.

Компонуя трубопроводные магистрали, следует ориентироваться на возможную смену длины при увеличении температурного режима или теплового линейного расширения (ΔL). Этот параметр определяется длиной труб, обозначаемой Lo и разностью температурных режимов Δϑ =ϑ2-ϑ1.

В приведенной формуле коэффициент теплового линейного расширения для трубопровода протяженностью 1 м при увеличении температурного режима составляет 1°C.

Гидравлический расчет трубопроводов с высоким давлением газа

Вычислительную программу гидравлического расчета следует выполнять на основе высокого натиска сосредоточенного газа. Производится подбор нескольких версий газовой трубы, которые должны подходить под все требования полученного проекта:

Определяется минимальный диаметр трубы, возможный к принятию в рамках проекта для нормального функционирования всей системы в целом.
Во внимание принимаются условия, в которых будет эксплуатироваться газопровод.
Производится уточнение особой спецификации.

После этого производится гидравлический расчет по таким стадиям:

  • В районе, где будет проходить газопровод, уточняется местность. Для того чтобы избежать ошибок в проекте при проведении дальнейших работ, план местности досконально рассматривается.
  • Изображается схема проекта. Главным условием этой схемы является то, что она должна проходить по кольцу. На схеме обязательно должны быть четко различимы разные ответвления к станциям потребления. При составлении схемы длину пути труб делают минимальной. Это нужно для того, чтобы сделать работу всего газопровода в целом максимально эффективной.
  • На изображенной схеме осуществляются измерения участков газовой магистрали. После этого выполняется расчетная программа, при этом, естественно, учитывается масштаб.
  • Полученные показания немного изменяют. Расчетная длина каждого участка трубы, изображенного на схеме, увеличивается приблизительно на десять процентов.
  • Для того чтобы определить общий расход топлива, производятся вычислительные работы. При этом на каждом участке магистрали учитывается расход газа, после чего он суммируется.
  • Заключительная стадия расчета трубопровода с высоким уровнем давления газа состоит в определении внутреннего размера трубы.

Расчет в Excel трубопроводов по формулам теоретической гидравлики.

Рассмотрим порядок и формулы расчета в Excel на примере прямого горизонтального трубопровода длиной 100 метров из трубы ø108 мм с толщиной стенки 4 мм.

Исходные данные:

1. Расход воды через трубопровод G в т/час вводим

в ячейку D4: 45,000

2. Температуру воды на входе в расчетный участок трубопровода  tвхв °C заносим

в ячейку D5: 95,0

3. Температуру воды на выходе из расчетного участка трубопровода  tвыхв °C записываем

в ячейку D6: 70,0

4. Внутренний диаметр трубопровода  dв мм вписываем

в ячейку D7: 100,0

5. Длину трубопровода  Lв м записываем

в ячейку D8: 100,000

6. Эквивалентную шероховатость внутренних поверхностей труб  в мм вносим

в ячейку D9:  1,000

Выбранное значение эквивалентной шероховатости соответствует стальным старым заржавевшим трубам, находящимся в эксплуатации много лет.

Эквивалентные шероховатости для других типов и состояний труб приведены на листе «Справка» расчетного файла Excel«gidravlicheskiy-raschet-truboprovodov.xls», ссылка на скачивание которого дана в конце статьи.

7. Сумму коэффициентов местных сопротивлений  Σ(ξ) вписываем

в ячейку D10: 1,89

Мы рассматриваем пример, в котором местные сопротивления присутствуют в виде стыковых сварных швов (9 труб, 8 стыков).

Для ряда основных типов местных сопротивлений данные и формулы расчета представлены на листах «Расчет коэффициентов» и «Справка» файла Excel «gidravlicheskiy-raschet-truboprovodov.xls».

Результаты расчетов:

8.Среднюю температуру воды tср в °C вычисляем

в ячейке D12: =(D5+D6)/2 =82,5

tср=(tвх+tвых)/2

9.Кинематический коэффициент вязкости воды n в cм2/с при температуреtср рассчитываем

в ячейке D13: =0,0178/(1+0,0337*D12+0,000221*D12^2) =0,003368

n=0,0178/(1+0,0337*tср+0,000221*tср2)

10.Среднюю плотность воды ρ в т/м3 при температуреtср вычисляем

в ячейке D14: =(-0,003*D12^2-0,1511*D12+1003,1)/1000 =0,970

ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000

11.Расход воды через трубопровод Gв л/мин пересчитываем

в ячейке D15: =D4/D14/60*1000 =773,024

G’=G*1000/(ρ*60)

Этот параметр пересчитан нами в других единицах измерения для облегчения восприятия величины расхода.

12.Скорость воды в трубопроводе vв м/с вычисляем

в ячейке D16: =4*D4/D14/ПИ()/(D7/1000)^2/3600 =1,640

v=4*G/(ρ*π*(d/1000)2*3600)

К ячейкеD16 применено условное форматирование. Если значение скорости не попадает в диапазон 0,25…1,5 м/с, то фон ячейки становится красным, а шрифт белым.

Предельные скорости движения воды приведены на листе «Справка» расчетного файла Excel «gidravlicheskiy-raschet-truboprovodov.xls».

13.Число Рейнольдса Reопределяем

в ячейке D17: =D16*D7/D13*10 =487001,4

Re=v*d*10n

14.Коэффициент гидравлического трения λрассчитываем

в ячейке D18: =ЕСЛИ(D17<=2320;64/D17;ЕСЛИ(D17<=4000; 0,0000147*D17;0,11* (68/D17+D9/D7)^0,25)) =0,035

λ=64Re                             при Re≤2320

λ=0,0000147*Re               при 2320≤Re≤4000

λ=0,11*(68/Re+∆/d)0,25  при Re≥4000

15.Удельные потери давления на трение Rв кг/(см2*м)вычисляем

в ячейке D19: =D18*D16^2*D14/2/9,81/D7*100 =0,004645

R=λ*v2*ρ*100/(2*9,81*d)

16.Потери давления на трение dPтрв кг/см2 и Па находим соответственно

в ячейке D20: =D19*D8 =0,464485

dPтр=R*L

и в ячейке D21: =D20*9,81*10000 =45565,9

dPтр=dPтр*9,81*10000

17.Потери давления в местных сопротивлениях dPмсв кг/см2 и Па находим соответственно

в ячейке D22: =D10*D16^2*D14*1000/2/9,81/10000 =0,025150

dPмс=Σ(ξ)*v2*ρ/(2*9,81*10)

и в ячейке D23: =D22*9,81*10000 =2467,2

dPтр=dPмс*9,81*10000

18.Расчетные потери давления в трубопроводе dPв кг/см2 и Па находим соответственно

в ячейке D24: =D20+D22 =0,489634

dP=dPтр+dPмс

и в ячейке D25: =D24*9,81*10000 =48033,1

dP=dP*9,81*10000

19.Характеристику гидравлического сопротивления трубопровода Sв Па/(т/ч)2 вычисляем

в ячейке D26: =D25/D4^2 =23,720

S=dPG2

Гидравлический расчет в Excel трубопровода по формулам теоретической гидравлики выполнен!

Формулы для расчета потерь давления по длине

Данная автоматизированная система позволяет произвести расчет потерь напора по длине online. Расчет производится для трубопровода, круглого сечения, одинакового по всей длине диаметра, с постоянным расходом по всей длине (утечки или подпитки отсутствуют). Расчет производится для указанных жидкостей при температуре 20 град. С. Если вы хотите рассчитать потери напора при другой температуре, или для жидкости отсутствующей в списке, перейдите по указанной выше ссылке — Я задам кинематическую вязкость и эквивалентную шероховатость самостоятельно.

Для получения результата необходимо правильно заполнить форму и нажать кнопку рассчитать. В ходе расчета значения всех величин переводятся в систему СИ. При необходимости полученную величину потерь напора можно перевести в потери давления.

Порядок расчета потерь напора

  • Вычисляются значения:
  • средней скорости потока

где Q — расход жидкости через трубопровод, A — площадь живого сечения, A=πd2/4, d — внутренний диаметр трубы, м
числа Рейнольдса — Re

где V — средняя скорость течения жидкости, м/с, d — диаметр живого сечения, м, ν — кинематический коэффициент вязкости, кв.м/с, Rг — гидравлический радиус, для круглой трубы Rг=d/4, d — внутренний диаметр трубы, м

Определяется режим течения жидкости и выбирается формула для определения коэффициента гидравлического трения.

  • Для ламинарного течения Re<2000 используются формула Пуазеля.

Для переходного режима 2000<Re<4000 — зависимость:

Для турбулентного течения Re>4000 универсальная формула Альтшуля.

где к=Δ/d, Δ — абсолютная эквивалентная шероховатость.

Потери напора по длине трубопровода вычисляются по формуле Дарси — Вейсбаха.

Потери напора и давления связаны зависимостью.

Потери давления по длине можно вычислить используя формулу Дарси — Вейсбаха.

После получения результатов рекомендуется провести проверочные расчеты. Администрация сайта за результаты онлайн расчетов ответственности не несет.

Выбор материала

Подбор материала производится на основе характеристик сред, транспортируемых по трубопроводной линии и рабочего давления, предусмотренного для данной системы. Следует помнить о корродирующем действии перекачиваемых сред, относительно материала стенок трубопроводной сети. Обычно трубы и химические системы изготавливают из стали. При отсутствии высокого механического и корродирующего воздействия при разработке труб используют серый чугун или нелегированную конструкционную сталь.

При высоком рабочем давлении и отсутствии нагрузок с коррозийным образованием используют трубы из высококлассной стали или технологию ее литья. При высоком корродирующем действии или предъявлении к чистоте продуктов высоких требований, трубы разрабатывают из нержавейки.

Для повышения устойчивости к действию морской воды применяют медно-никелевый состав. Допускается использование алюминиевых сплавов, тантала или циркония. Хорошо распространены пластиковые составы, устойчивые к коррозийным образованиям. Они обладают малым весом и просты в обработке, что выступает идеальным решением для обустройства канализационных систем.

Гидравлический расчет в системах с естественной циркуляцией

Алгоритм проведения вычисления также может меняться в зависимости от типа системы. Различают два основных вида:

  1. Естественная циркуляция – самостоятельное движение воды за счета изначального параметра напора (его также называют располагаемым).
  2. Принудительная циркуляция – системы, в которых жидкость передвигается за счет работы дополнительных насосов и механизмов.

Естественно, что в зависимости от конкретной конструкции описываемый в статье параметр может изменяться. Однако существуют следующие рекомендации по созданию систем трубопроводов с естественной циркуляцией:

  1. Максимальная длина горизонтальных участков – не более двадцати метров.
  2. Рекомендуемый диаметр магистральный трубы – 5 см.
  3. Рекомендуемое значение диаметра каждой тридцать пятой секции – 5 см.
  4. При расчете на каждые десять метров требуется дополнительно прибавлять половину диаметра трубы к ее размерам в вычислениях – это требуется для снижения скорости носителя тепла и нивелирования потерь напора за счет трения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока  приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

 При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Расчет диаметра трубы для водоснабжения и отопления

Основным критерием подбора трубы отопления является ее диаметр. От этого показателя зависит, насколько эффективным будет обогрев дома, срок эксплуатации системы в целом. При малом диаметре в магистралях может возникнуть повышенное давление, которое станет причиной протечек, повышенной нагрузки на трубы и металл, что приведет к проблемам и бесконечным ремонтам. При большом диаметре теплоотдача системы отопления будет стремиться к нулю, а холодная вода будет просто сочиться из крана.

Пропускная способность трубы

Диаметр трубы напрямую влияет на пропускную способность системы, то есть в данном случае имеет значение количество воды или теплоносителя, проходящего через сечение в единицу времени. Чем больше циклов (перемещений) в системе за определенный промежуток времени, тем эффективнее происходит обогрев. Для труб водоснабжения диаметр влияет на исходное давление воды – подходящий размер будет только поддерживать напор, а увеличенный – снижать.

По диаметру подбирают схему водопровода и отопления, количество радиаторов и их секционность, определяют оптимальную длину магистралей.

Так как пропускная способность трубы является основополагающим фактором при выборе, следует определиться, а что, в свою очередь, влияет на проходимость воды в магистрали.

РасходПропускная способность
Ду трубы15 мм20 мм25 мм32 мм40 мм50 мм65 мм80 мм100 мм
Па/м — мбар/м меньше 0,15 м/с 0,15 м/с 0,3 м/с
90,0 — 0,90017340374516272488471696121494030240
92,5 — 0,92517640775616522524478897561515630672
95,0 — 0,95017641476716782560486099001537231104
97,5 — 0,975180421778169925964932100441555231500
100,0 — 1,000184425788172426325004101521576831932
120,0 — 1,200202472871189728985508111961735235100
140,0 — 1,400220511943205931435976121321879238160
160,0 — 1,6002345471015221033736408129962016040680
180,0 — 1,8002525831080235435896804138242142043200
200,0 — 2,0002666191151248637807200145802264445720
220,0 — 2,2002816521202261739967560153362376047880
240,0 — 2,4002886801256274041767920160562487650400
260,0 — 2,6003067131310285543568244167402592052200
280,0 — 2,8003177421364297043568566173382692854360
300,0 — 3,0003317671415307646808892180002790056160

Факторы влияния на проходимость магистрали:

  1. Давление воды или теплоносителя.
  2. Внутренний диаметр (сечение) трубы.
  3. Общая длина системы.
  4. Материал трубопровода.
  5. Толщина стенок трубы.

На старой системе проходимость трубы усугубляется известковыми, иловыми отложениями, последствиями коррозии (на металлических изделиях). Все это в совокупности снижает со временем количество воды, проходящей через сечение, то есть подержанные магистрали работают хуже, чем новые.

Примечательно, что этот показатель у полимерных труб не меняется – пластик гораздо менее, чем металл, позволяет шлаку накапливаться на стенках. Поэтому пропускная способность труб ПВХ остается такой же, как и в день их монтажа.

Скорость потока

Предположим, что наша задача — гидравлический расчет тупиковой водопроводной сети с известным пиковым расходом через нее. Нам необходимо выяснить диаметр, который обеспечит приемлемую скорость перемещения потока через трубопровод (напомним, 0,7-1,5 м/с).

Формулы

Расход воды, скорость ее потока и размер трубопровода увязываются между собой следующей последовательностью формул:

S = ? r ^2, где:

  • S — площадь сечения трубы в квадратных метрах;
  • ? — число «пи», принимаемой равным 3,1415;
  • r — радиус внутреннего сечения в метрах.

Q = VS, где:

  • Q — расход воды (м3);
  • V — скорость водяного потока (м/с) ;
  • S &очень плохо;#8212; площадь сечения в квадратных метрах.

Пример

Давайте выполним гидравлический расчет пожарного водопровода для одной струи с расходом 2,5 л/с.

Как мы уже узнали, в этом случае скорость водяного потока ограничена м/с.

  1. Пересчитываем расход в единицы СИ: 2,5 л/с = 0,0025 м3/с.
  2. Вычисляем по второй формуле минимальную площадь сечения. При скорости в 3 м/с она равна 0,0025/3=0,00083 м3.
  3. Рассчитываем радиус внутреннего сечения трубы: r^2 = 0,00083/3,1415 = 0,000264; r = 0,016 м.
  4. Внутренний диаметр трубопровода, так, должен быть равен как минимум 0,016 х 2 = 0,032 м, либо 32 миллиметра. Это соответствует параметрам металлической трубы ДУ32.

Снижение давления и расчет гидросопротивления

Для определения напора внутри труб и правильной подборки оборудования, способствующего перекачиванию жидких или газообразных сред, требуется вычислить снижение давления. За неимением доступа к интернет-сети, расчеты производятся по формуле:

Δp=λ·(ld1)·(ρ/2)·v²

Δp – перепады напряжения на участке трубопровода, Па l – протяженность участка трубопроводной линии, м λ – коэффициент сопротивления d1 – поперечное сечение труб, м ρ – уровень плотности транспортируемых сред, кг/м3 v – скорость перемещения, м/с

Гидравлическое сопротивление образуется под воздействием 2-х основных факторов:

  • сопротивление трения;
  • местное сопротивление.

Первый вариант предусмотрен при образовании неровностей и шероховатостей, препятствующих движению перекачиваемых сред. Для преодоления тормозящего эффекта требуются дополнительный расход энергии. При ламинарном протоке и соответствующего ему низкого показателя Рейнольдса (Re), характеризующегося равномерностью и исключением возможности смешения соседних слоев жидких или газообразных сред, влияние шероховатостей минимально. Это объясняется увеличением параметра крайнего вязкого подслоя перекачиваемых сред, относительно образованных неровностей и выступов на поверхности труб. Эти условия позволяют считать трубы гидравлически гладкими.

При повышении значения Рейнольдса вязкий подслой имеет меньшую толщину, что обеспечивает перекрытие неровностей и воздействия шероховатостей, уровень гидравлического сопротивления не зависит от показателя Рейнольдса, и средней высоты выступов на покрытии труб. Последующее повышение значения Рейнольдса позволяет перевести перекачиваемые среды в режим турбулентного протекания, где образуется разрушение вязкого подслоя, а образуемое трение определяется величиной шероховатости.

Потери при трении рассчитываются путем подстановки данных:

HТ=[(λ·l)/dэ]·[w2/(2g)]

  • HТ – потери напора при сопротивлении трению, м
  • [w2/(2g)] – скоростной напор, м
  • λ – коэффициент сопротивления
  • l – протяженность трубопроводного участка, м
  • dЭ – эквивалентное значение поперечного сечения трубопроводной линии, м
  • w – скорость движения сред, м/с
  • g – ускорение свободного падения, м/с2

Гидравлический расчет в системах с естественной циркуляцией

Алгоритм проведения вычисления также может меняться в зависимости от типа системы. Различают два основных вида:

  1. Естественная циркуляция – самостоятельное движение воды за счета изначального параметра напора (его также называют располагаемым).
  2. Принудительная циркуляция – системы, в которых жидкость передвигается за счет работы дополнительных насосов и механизмов.

Естественно, что в зависимости от конкретной конструкции описываемый в статье параметр может изменяться. Однако существуют следующие рекомендации по созданию систем трубопроводов с естественной циркуляцией:

  1. Максимальная длина горизонтальных участков – не более двадцати метров.
  2. Рекомендуемый диаметр магистральный трубы – 5 см.
  3. Рекомендуемое значение диаметра каждой тридцать пятой секции – 5 см.
  4. При расчете на каждые десять метров требуется дополнительно прибавлять половину диаметра трубы к ее размерам в вычислениях – это требуется для снижения скорости носителя тепла и нивелирования потерь напора за счет трения.

Стоимость установки систем водоснабжения

«точки» ГВС (водоразетка)шт1 100 ₽
«точки» ХВС (водоразетка)шт1 100 ₽
Выводы под полотенцесушительшт2 000 ₽
Шкафа и распределителя водоснабженияшт2 500 ₽
ЭВН (электроводонагревателя) до 100 лшт1 800 ₽
Насосной станции самовсасывающейшт2 500 ₽
Фильтра (колбы, до 3-х штук)шт1 500 ₽
Гидроаккумулятора (до 100 л.)шт1 500 ₽
Гидроаккумулятора (до 200 л.)шт1 800 ₽
Магистральных труб системы водоснабжения и трубной изоляции (сшитый полиэтилен, металлопластик) до 20 ммм/пог100 ₽
Магистральных труб (полипропилен) до 32 ммм/пог230 ₽
Магистральных труб и утепление трубной изоляцией (сшитый полиэтилен, металлопластик) до 32 ммм/пог230 ₽
Редуктора давленияшт1 000 ₽
Скважинного насоса (глубина скважины до 70 м)штот 9 500 ₽
Колодезного насоса (глубина колодца до 15 м)штот 5 000 ₽
Реле давленияшт2 500 ₽
Стоимость уточняйте по телефону: 8 495 744 67 74___________

Стоимость установки систем водоснабжения

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий