Характеристики химической коррозии и как ее устранить

Ржавчина на металле — причины ее возникновения

Первый и очень важный вопрос, с которого нужно начать бороться с коррозией, подразумевает выяснение причины ее возникновения. Узнав причины появления реакции, можно не только подобрать оптимальный способ удаления коррозии, но и не допустить повторного ее появления.

Почему ржавеет металл? Основная причина появления реакции — это состав металла. Состоит он из различных соединений, таких как кислород, углерод, сера и прочие. Именно эти компоненты становятся следствием появления ржавых пятен на металлических деталях, помещенных в воду или влажную среду.

Это интересно! Чистые металлы не подвергаются ржавлению, а к таковым относится золото, серебро и платина.

Металл, контактирующий с воздухом, образует оксиды, а с влагой — гидроксиды. Воздействие влаги и кислорода на металл способствует его разрушению, и чем меньше толщина стали, тем быстрее происходит процесс его разрушения. Это явление называется коррозией, а результат ее возникновения — ржавчина. Избежать возникновения этих процессов практически невозможно, но применяются различные способы и методы, позволяющие снизить скорость развития коррозии.

Коррозия представляет собой длительный процесс, поэтому для разрушения металлических изделий требуется большой промежуток времени, который напрямую зависит от толщины железа. Из этого следует, что основными причинами появления ржавчины на металле являются следующие факторы:

  1. Воздействие кислорода и влаги на необработанный металл. При этом вовсе не обязательно деталь должна находиться во влажном помещении. Если хранить металлическое изделие в сухом и проветриваемом помещении, то признаки коррозии также образуются спустя некоторое время.
  2. Отсутствие специальных защитных покрытий — к ним относятся не только лаки и краски, но и цинковые покрытия, обеспечивающие высокоэффективную защиту от разрушительного воздействия коррозии.
  3. Тип стали — высоколегированные стали подвержены ржавлению с меньшей интенсивностью, что обусловлено низким процентным содержанием в составе углерода. Однако такие стали достаточно дорогие, поэтому они используются для изготовления различных высокоточных деталей или расходных материалов для электроинструмента.

Многие ошибочно полагают, что не ржавеет еще такой вид стали, как нержавейка. Не будем вдаваться в подробности состава этого материала, но стоит отметить, что даже нержавеющая сталь подвержена процессу коррозии. Связано это, прежде всего, с тем, что хромовая пленка, образующаяся при контакте с кислородом, и тем самым защищающая металл от ржавления, повреждается, что в итоге приводит к появлению ржавчины.

Подводя краткий итог, нужно отметить, что ржавление металла — это нормальное природное явление, которое для человека является глобальной проблемой. И речь идет не только о проблемах со ржавеющим кузовом авто, но и такими глобальными катастрофами, как затопление кораблей, разрушение мостов и т.п., спровоцированных посредством ржавления металла.

Коррозия металлов под землей

Существует вред для металлов не только на поверхности, но и под землей. В настоящее время на некоторой глубине достаточно часто залегают металлические коммуникации, которых постепенно уничтожает электрокоррозия. Для борьбы с таким типом коррозии необходимо:

  • Отстранять телекоммуникационные трасы от рельс электрифицированного транспорта (проблема в блуждающих токах);
  • Увеличить сопротивление трубопровода и пространства в грунте;
  • Монтаж изолирующих фланцев;
  • Повышение электропроводимости трубопроводов и монтаж на сальниковых компенсаторах токопроводящих перемычек;
  • Регулировать допустимое уравнивание потенциалов в сети параллельных трубопроводов.
  • Установка поперечных перемычек.

Где бы не находился металлический элемент, на воздухе, под землей или в помещении, его в любом случае нужно обрабатывать. Правильно подобранные краски и их качество будет залогом успешного и недорогого способа борьбы с коррозией металла.

Описание процесса

Электрохимическая коррозия — это процесс, который протекает при обязательном присутствии:

  • электролита;
  • металлов с низким и высоким окислительно-восстановительными потенциалами (электродные потенциалы).

Электролит образуют вода, конденсат, любые природные осадки. Наличие двух видов металла практически не бывает всегда, и обусловлено двумя факторами:

  1. Неоднородностью изделия, то есть наличием инородных включений.
  2. Непосредственным касанием изделий из различных металлов.

В электролите неоднородные металлы образуют короткозамкнутый гальванический элемент, называемый коррозионным. Такое сочетание приводит к растворению металла с более низким электродным потенциалом, что и называют электрохимической коррозией. Скорость этого процесса сильно зависит от наличия солей в растворе и его температуры.

Особенности антикоррозионных составов

В местах скола краски видна ржавчина, а на осях покрытых смазкой коррозии нет

Что такое ингибиторы коррозии? Это такие вещества и элементы, которые, присутствуя в среде, подверженной опасному влиянию коррозии, в состоянии уменьшать и в целом останавливать коррозионное воздействие на металл. Ингибитор коррозии может представлять собой как одно химическое соединение, так и быть смесью многих.

Ингибиторами наиболее часто являются ПАВ вещества, а также всевозможная органика. При влиянии на изделие они еще сильнее улучшают защитные характеристики оксидной пленки на металле. По этой причине вы можете сделать вывод, что присутствие кислорода в среде благоприятствует подъему защитного эффекта от воздействия коррозии. Однако, если оксидная пленка имеет слабую устойчивость — ухудшается адсорбция ингибитора на верхнем слое металла.

  • Ингибитор солеотложений ИОМС-1 (раствор)г 200 руб/кг. Макрофлекс.
  • Ингибитор коррозии Protectogen(протектоген). C Aqua.
  • Комплексонат – раствор цинкового комплекса. Эктоскейл.
  • ГАЛАН. Протектор. Ингибитор коррозии (5 л). Защищает от коррозии трубопроводы, радиаторы и прочие системы отопления.

Почему металл корродирует?

Жизнь современного человека нельзя представить без металлов. Они окружают нас везде — это и бытовая техника в наших домах, и транспортные средства, на которых мы добираемся до дома или работы, и смартфоны, без которых многие из нас не представляют жизнь. Почти всё, что нас окружает состоит из металлов, но, к сожалению, как и всё в этом мире, они не вечны и под действием внешней среды разрушаются — корродируют.

Почему коррозия «выгодна» для металлов? Дело в том, что большинство из них существуют в природе в химически связанном состоянии, например, в виде оксидов (корунд) или сульфидов (пирит). В чистом виде почти все металлы неустойчивы и чтобы выделить их из соединений приходится затрачивать немалую энергию. Обратный же процесс, когда металлы переходят в связанное состояние, всегда термодинамически более выгоден. Поэтому он происходит самопроизвольно, а металлы при любой возможности стремятся вступить в реакцию со своим окружением и перейти в более устойчивую форму. Иллюстрация этого представлена на рисунке 1.

Рисунок 1 – Схема восстановления металла из руд с последующей коррозией (окислением). Э – условный уровень энергии. Коррозия приводит к огромным экономическим затратам, а её следствием становятся глобальные экологические катастрофы. Потеря металлофонда от коррозии составляет порядка 12% в год.

Помимо прямых потерь существуют и косвенные потери, вызываемые коррозией:

  • из-за простоя оборудования вызванных авариями;
  • из-за снижения мощностей оборудования;
  • из-за снижения качества продукции;
  • на ликвидацию последствий аварии;
  • на ремонт оборудования;
  • на дальнейшую защиту от коррозии.

Грунтовка от коррозии

Что может нам предоставить предварительное грунтование металла? Все просто и практично. Грунтовка позволяет производителю металлических деталей или конструкций складировать продукцию и хранить изделия до востребования. Некоторые виды грунтовки предназначены для предварительной обработки поверхности металла перед финишной покраской. Коррозия металла останавливается сразу послу грунтования поверхности. В зависимости от составов грунтовки, ее могут применять в следующих условиях:

  • Ингибирирующие;
  • Изолирующие – основное свойство грунта, уберечь поверхность от влаги и перекрыть доступ кислорода к поверхности;
  • Фосфатирующие – чаще всего используются для оцинкованной стали, листовой металл с таким типом грунтовки улучшает свою адгезию к краскам;
  • Пассивирующие – понижают активность химических составов;
  • Протекторные – повышают защитные свойства за счет входящих в ее состав высокодисперсионных порошков.

Классификация коррозионных процессов по условиям протекания коррозии.

  • Газовая коррозия протекает в газовой фазе с минимальным количеством влаги. Данная коррозия возникает при контакте металлов с агрессивными газами (галогены, кислород, оксид серы).
  • Атмосферная коррозия протекает в атмосфере воздуха или другого влажного газа.
  • Жидкостная коррозия – это коррозия, протекающая в различные рода жидкостях.
  • Подземная коррозия – это коррозия металла, возникающая в следствии неоднородностей почвы, грунта.
  • Коррозия в условиях криптоклимота происходит в условиях замкнутого пространства.
  • Радиационная коррозия вызвана действием радиационного излучения.
  • Морская коррозия возникает из-за депассивирующего свойства ионов хлора.
  • Структурная коррозия связанна со структурной неоднородностью металлов.
  • Коррозия, возникающая под действием блуждающих токов.

Виды коррозии

Срок службы металлических конструкций учитывают при проектировании производственных мощностей, мостов, зданий. В некоторых химических производствах отдельные аппараты и их детали работают только несколько месяцев или недель.

В зависимости от причины разрушения выделяют 3 вида коррозии: атмосферная, почвенная, жидкостная. Рассмотрим их особенности.

  1. Атмосферная — проявляется под воздействием активных химических веществ в воздухе.
  2. Почвенная — происходит при взаимодействии металла с агрессивным составом грунтовых вод, почвы.
  3. Жидкостная — возникает при контакте с водной средой с высоким содержанием солей, которые ускоряют окисление.

Популярные темы сообщений

  • Осевое вращение земли Ещё со времен до нашей эры человечество обеспокоилось вопросом передвижения небесных тел и смены условий жизни на Земле. Движение луны и её фазы, заход и восход солнца, безостановочная смена времени суток и погоды,
  • Македонский Александр Александр Македонский родился в 356 году до н.э. в городе Пелла – столице Древней Македонии. Отец Александра – царь Филипп II – был доблестным и храбрым воином. У него Александр учился военному ремеслу и искусству править.
  • Город Армавир Армавир — это город, расположенный в Краснодарском крае, на левом берегу реки Кубань. Этот населенный пункт имеет долгую историю. Впервые он упоминается в 1839 году. В это время черкесские армяне основали

Виды коррозии

Коррозионный процесс портит жизнь людям многие века, поэтому он изучен достаточно широко. Существуют различные классификации коррозии в зависимости от типа окружающей среды, от условия использования коррозирующих материалов (находятся ли они под напряжением, если контактируют с другой средой, то постоянно или переменно и пр.) и от множества других факторов.

Электрохимическая коррозия

Коррозировать могут два различных металла, соединенных между собой, если на их стык попадет, например, конденсат из воздуха. У разных металлов различные окислительно-восстановительные потенциалы и на стыке металлов образуется фактически гальванический элемент. При этом металл с более низким потенциалом начинает растворяться, в данном случае, коррозировать. Это проявляется на сварочных швах, вокруг заклепок и болтов.

Для защиты от такого вида коррозии применяют, например, оцинковку. В паре металл-цинк коррозировать должен цинк, но при коррозии у цинка образуется оксидная пленка, которая сильно замедляет процесс коррозии.

Химическая коррозия

Если поверхность металла соприкасается с коррозионно-активной средой, и при этом нет электрохимических процессов, то имеет место т.н. химическая коррозия. Например, образование окалины при взаимодействии металлов с кислородом при высоких температурах.

Примечания

  1. Антикоррозионная защита / Козлов Д.Ю.. — Екатеринбург: ООО «ИД «Оригами», 2013. — С. 343. — 440 с. — 1000 экз. — ISBN 978-5-904137-05-2.
  2. «ГОСТ 5272-68: Коррозия металлов. Термины.»
  3. Спиридонов А. А. В служеньи ремеслу и музам. — 2-е изд. — М.: Металлургия, 1989. — С. 53. — (Научно-популярная библиотека школьника). — 50 000 экз. — ISBN 5-229-00355-3.
  4. Merchant and Navy Ship events (1946—2000) — 25/12 1967
  5. См. также, например, газеты «Ogden Standard Examiner», «Bridgeport Post» за 24 декабря 1967 года.
  6. ISO 8501-1. «Подготовка стальной основы перед нанесением красок и подобных покрытий. Визуальная оценка чистоты поверхности Часть 1. Степени окисления и степени подготовки непокрытой стальной основы и стальной основы после полного удаления прежних покрытий.»
  7. Газотермическое напыление
  8. ГОСТ Р 9.316-2006 «Единая система защиты от коррозии и старения. Покрытия термодиффузионные цинковые. Общие требования и методы контроля.
  9. Доклад на 16-м Всемирном конгрессе по коррозии в Пекине, сентябрь 2005 года.
  10. «Руководство для подготовки инспекторов по визуальному и измерительному контролю качества окрасочных работ» — Екатеринбург: ООО «ИД «Оригами», 2009—202 с., ISBN 978-5-9901098-1-5
  11. «Part Of Bridge On Route I-95 Falls Into River In Greenwich,; Killing 3.». New York Times. June 29, 1983. (англ.)
  12. (Июнь 2008) «ИЗ ИСТОРИИ КОРРОЗИИ». журнал «Очистка. Окраска»№ 4 (15) : 48. Проверено 2010-10-03.

Способы защиты от коррозии металла и сплавов

Инженеры и технологи разработали эффективные способы борьбы с коррозией, которые делят на два типа:

  • бытовые — «покрывают» хозяйственные нужды, справляются с небольшими пораженными участками;
  • промышленные — доступные методы обработки поверхностей, которые применяют на производствах, в строительстве, на пораженных габаритных участках.

Основные промышленные способы защиты металлов от коррозии включают:

  • термообработку — сводится к повышению жаропрочности поверхностей, сглаживает структуру, под действием чего сплав теряет напряжение;
  • обработку лакокрасочными материалами — образует сплошную пленку, которая препятствует агрессивному воздействию среды;
  • пассивацию — предусматривает использование легирующих добавок: молибден, никель, хром замедляют анодный процесс;
  • электрообработку — подходит для стальных деталей, электрохимические методы защиты металлов предотвращают образование коррозии на котлах, элементах водных видов транспорта, буровых платформах;
  • обработку ингибиторами — вещества замедляют химические процессы, распространение разъедания.

Защита металлов от коррозии лакокрасочными покрытиями — эффективный и распространенный метод, который позволяет окрасить конструкцию в желаемый цвет, надежно защитить поверхность. Конструкцию окрашивают эмалями, которые полностью перекрывают доступ воздуха к металлу. Происходит нейтрализация или обескисление коррозионных сред, ингибиторы в составе создают на поверхности адсорбционную пленку, которая тормозит электродные процессы, изменяет электрохимические параметры металла.

Простота и невысокая стоимость технологии — основные преимущество и причины распространенности метода. К минусам относятся недолговечность покрытия, необходимость периодически обновлять защитный слой.

На качество покрытия влияют тщательность подготовки и очистки металла, соблюдение технологии и толщины нанесения, которые заявлены производителем ЛКМ.

Основные типы атмосферной коррозии

Принято выделять три основных типа атмосферной коррозии: влажная, мокрая, сухая. Жидкая и мокрая, в силу способности проводить электрический ток, протекают по электрохимическим законам, а сухая по химическим.

  • Влажная глубокая коррозия металла будет протекать там, где на металле можно наблюдать тонкую влажную пленку. В зависимости от происходящего в окружающей среде, на пленке может образовываться конденсат, после чего начинается процесс коррозийного разрушения.
  • Мокрая коррозия начинается на поверхности хорошо увлажненной, при относительной влажности окружающей среды около 100%. Капли, образовавшиеся на поверхности, помогают коррозийному износу.
  • Сухая атмосферная коррозия менее агрессивна, потому что процесс разрушения протекает при малой влажности воздуха. Образовавшаяся на изделии пленка замедляет образование ржавчины.

Закорродировавший корабль

Типы коррозии и описание процесса

  • Химическая — это такой тип взаимного влияния металла с окружающей средой, в процессе действия которого окисление и дальнейшее восстановление части среды проходят в едином акте. Продукты взаимного влияния не имеют разделения в пространстве.
  • Электрохимическая — это такой тип взаимного влияния металла с коррозийным пространством, в котором реакция ионизации коррозионной среды проходит в нескольких актах.
  • Газовая— это коррозия металлических поверхностей при слабом содержании воды (обычно влаги находится не больше 0,2 %) либо при максимальных рабочих температурах. В современной химической и газовой промышленности подобный тип коррозии может встречаться чаще остальных.
  • Атмосферная — это тип коррозии в воздушной атмосфере либо в среде влажного газа.
  • Биокоррозия — это биологический тип коррозии металла, который протекает под воздействием жизнедеятельности микробов и разных микроорганизмов.
  • Контактная — это такой тип коррозии, который провоцируется контактом нескольких типов металлов с различными стационарными потенциалами.
  • Радиационная — это такой тип коррозии металла, который обусловлен влиянием радиоактивного облучения.

Также существует коррозия внешним или блуждающим электрическим током. Еще один тип коррозии — это коррозия под напряжением, которая спровоцирована одномоментным влиянием коррозионной среды и протеканием механического напряжения

Важно учитывать, что данный тип коррозии является очень вредным, в особенности для систем, испытывающих сильные физические нагрузки

Коррозия в неэлектролитных жидкостях

Общие сведения

К жидким неэлектропроводным средам (а точнее, неэлектролитным жидкостям) можно отнести такие органические вещества, к примеру:

  • Керосин.
  • Бензол.
  • Бензин.
  • Хлороформ.
  • Нефть.
  • Спирты.
  • Фенол.
  • Тетрахлорид углерода.

Еще к таким жидкостям причисляют малое количество жидкостей неорганического типа, к примеру, жидкий бром и сера, которая расплавлена. При этом следует отметить, что растворители органического типа сами по себе не будут вступать в реакцию с металлами, но, при наличие маленького объема примесей появляется интенсивный процесс взаимодействий. Скорость коррозии увеличивают находящиеся в нефти элементов с содержанием серы.

Также, для усиления коррозийных процессов нужны высокие температуры. Влага будет интенсифицировать развитие коррозии по электромеханическому принципу. Еще одним фактором быстрого коррозийного развития – бром в жидком виде. При нормальной температуре он особенно разрушительно будет воздействовать на высокоуглеродистые стали, титан и алюминий. Менее существенно воздействие брома на никель и железо, а самую большую устойчивость к жидкому типу брома будут показывать тантал, свинец, платина и серебро.

Расплавленная сера будет вступать в агрессивные реакции практически со всеми металлами, и в первую очередь с оловом, свинцом и медью. На углеродистые марки титан и стали сера будет влиять меньше, а еще практически полностью разрушает алюминий. Защитные действия для металлических конструкций, которые находятся в неэлектропроводных средах жидкого типа, проводят добавлением устойчивым к определенной среде металлом (к примеру, сталей с большим содержанием хрома). Еще используются особые защитные покрытия (к примеру, в среде, где есть много серы, применяют алюминиевые покрытия).

Способы защиты от коррозии

Способы борьбы с коррозией будут включать в себя:

  • Обработку главного металла защитным слоем (например, нанесение лакокрасочного материала).

  • Применение ингибиторов (арсенитов или хроматов).
  • Внедрение материалов, которые устойчивые к коррозийным процессам.

Подбор определенного материала будет зависеть от потенциальной эффективности (тут имеется виде финансовой и технологической) ее применения.

Современные принципы по защите металла от химической коррозии металла будут основаны на следующих методиках:

  1. Улучшение споротивляемости химического типа. Себя смогли успешно зарекомендовать устойчивые материалы (стекло, высокополимерный пластик и керамика).
  2. Изоляция материала от агрессивных сред.
  3. Уменьшение агрессивности технологической среды – в роли примеров таких действий можно выполнить нейтрализацию и удалить кислотность в коррозионой среде, а еще применять различные ингибиторы.
  4. Защита электрохимического типа (накладывание внешнего тока).

Указанные методики будут подразделяться на две группы:

  • Повышение сопротивляемости химического типа и изолирование будет применяться до того, как металлическая конструкция запускается в использовании.
  • Уменьшение агрессивности и защиты электрохимического типа применяется уже при применении изделий и металла. Использование обеих методик дает возможность внедрять новые защитные методы, и в результате защита будет обеспечиваться изменением эксплуатационных условий.

Одним из самых часто используемых методов защиты металла является антикоррозийное гальваническое покрытие, но это экономически нерентабельно при большой площади поверхности. Причина в больших тратах на процесс подготовки. Ведущее место среди методов по защите будет занимать покрытие металла лакокрасочным материалом.

И все-таки, окрашенная поверхность защищает металлы от процессов коррозии даже при локальном повреждении пленки, тогда как несовершенные покрытия гальванического типы способны даже ускорить коррозию.

Органосиликатные покрытия

Для качественной защиты от коррозии рекомендуется применение металлов с высоким уровнем гидрофобности, непроницаемости в водных, газовых и паровых средах. К числу таких материалов относятся органосиликаты.

Химическая коррозия практически не распространяется на органосиликатные материалы. Причины этого кроются в повышенной химической устойчивости таких композиций, их стойкости к свету, гидрофобных качествах и невысоком водопоглощении. Также органосиликаты устойчивы к низким температурам, обладают хорошими адгезивными свойствами и износостойкостью.

Проблемы разрушения металлов из-за воздействия коррозии не исчезают, несмотря на развитие технологий борьбы с ними. Причина в постоянном возрастании объемов производства металлов и все более сложных условий эксплуатации изделий из них. Окончательно решить проблему на данном этапе нельзя, поэтому усилия ученых сосредоточены на поисках возможностей по замедлению коррозионных процессов.

Способы защиты от коррозии

Разработки в сфере коррозионной протекции

Рассмотрев, какие виды коррозии существуют, стоит описать, бывают ли орудия против них. Исследования в области защиты от коррозионных процессов проводятся на постоянной основе. На сегодняшний день самыми популярными методами борьбы против разрушителя металлической поверхности являются:

  1. Защитное покрытие.
  2. Воздействие на коррозионную среду с понижением активности среды (лишение коррозионной среды кислорода, использование ингибиторов процесса).
  3. Протекция электрохимического направления.
  4. Инновационная разработка и внедрение в производство новейших структурных материалов с повышенной устойчивостью к процессу разрушения. Суть метода заключается в вычленении из металлических сплавов добавок, которые катализируют разрушительный процесс (например, удаление из сплавов алюминия примеси железа, из сплавов железа – серы), либо прямопротивоположном процессе – внедрении в существующий сплав дополнительных элементов, передающих свою коррозионную устойчивость всему сплаву(к примеру, добавление хрома или никеля в сплав железа, усиление магниевых сплавов марганцем и т.п.).
  5. Использование в строительстве неметаллических компонентов, где это представляется возможным (высокополимерного пластика, стекла и керамики).
  6. Минимизация воздействия неблагоприятных условий на металл (отделение металлических конструкций от внешней среды, скорейший ремонт на участках скопления воды, удаление прощелин в цельных конструкциях).

Защитная пленка как преграда разрушению

Коррозия металлов не может проникнуть внутрь металлического изделия без внешних повреждений. На конструкции наносят покрытия – это и служит как специфическая защита. Ряд металлов известны нам по своей ценности в сфере ювелирного дела, так подобные пленки выполняют не только защитную функцию, но и эстетическую.

Металлические покрытия в свою очередь делятся на анодные и катодные. Анодные пленки выполняются из металла активнее, нежели внутренний защищаемый сплав. Катодные же, наоборот, выполнены из металла менее активного, и не направлены на протекцию нижнего слоя металл в случае видимых повреждений.

Неметаллические пленки так же разделены на 2 подвида: неорганические (эмали) и органические (лаки, краски, резина, битум).

4 Что представляет собой химическая коррозия?

Под таким явлением понимают разрушение металла, вызываемое контактом коррозионной среды и материала. Причем при подобном взаимодействии наблюдается сразу два процесса:

  • коррозионная среда восстанавливается;
  • металл окисляется.

Электрохимическая коррозия металлов отличается от химической тем, что последняя протекает без электротока. А первопричина этих видов коррозии, коей является термодинамическая неустойчивость, остается неизменной. Металлы легко переходят в разные состояния (включая и более устойчивые), причем в этом случае отмечается снижение их термодинамического потенциала.

Существуют далее приведенные виды химкоррозии:

  • в жидких составах, которые не причисляются к электролитами;
  • газовая.

К жидкостям-неэлектролитам относят составы неспособные проводить электроток:

  • неорганические: сера в расплавленном состоянии, жидкий бром;
  • органические: бензин, керосин, хлороформ и иные.

Неэлектролиты в чистом виде с металлами не контактируют. Но при появлении в жидкостях совсем малого числа примесей сразу же “стартует” химическая коррозия металлов (причем весьма бурная). В тех ситуациях, когда реакция проходит еще и при повышенных температурах, ржавление будет происходить намного интенсивнее. А если в неэлектролитические жидкости попадает вода, запускается механизм электрохимической коррозии, описанный нами выше.

Процесс ржавления (химического) чаще всего идет в пять этапов:

  • сначала к поверхности металла подходит окислитель;
  • на поверхности стартует хемосорбция реагента;
  • после этого начинает формироваться оксидная пленка (взаимодействие металла и окислителя);
  • отмечается десорбция материала и оксидов;
  • фиксируется диффузия в жидкость-неэлектролит оксидов.

Два этапа, указанные последними, отмечаются не каждый раз.

Неметаллические покрытия

Один из самых простых способов предотвратить коррозию – использовать защитные покрытия из неметаллов – краски, пластика, воска или порошка. Порошки, включая эпоксидную смолу, нейлон и уретан, наносятся на металлическую поверхность и нагреваются до стадии расплавления, образуя тонкую плёнку.

Краска действует как покрытие, защищающее металлическую поверхность от электрохимического заряда, который исходит от коррозионно опасных соединений. Обычно используют комбинацию различных слоёв краски, которые выполняют разные функции. Грунтовка действует как ингибитор, промежуточный слой увеличивает общую толщину краски, а финишный слой обеспечивает устойчивость к факторам окружающей среды.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий